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The relatmnship between the flavour identifications of staggered fermions in configuration and m momentum space is 
clarified for interacting theorms It ~s demonstrated that these ldentlficatmn schemes are identical in the continuum hmlt. 

1. The staggered fermion formulation [ 1 ] has certain advantages over other methods. Firstly, since there Is only 
one field component per site and per colour, there is a considerable advantage for numerical simulations. Second- 
ly, from the theoretical point of  view, it is also attractive because the formulation retains a continuous remnant 

of  the chlral symmetry of  the continuum theory. 
However, the specles-doubhng problem is roll present. The task of  identifying these spemes as different flavours 

of  quark is non-trlvlal, and has only recently been studied in the context of  interacting theories [2 -5 ] .  The aim 
of  this letter IS to clarify these discussions. 

In what follows we work on a four-dimensional, hypercubxc, euchdean lattices of  spacing a. Coordinates and 
fields are dlmenslonful. We use hermltean gamma matrices, (7u , ")'v } = 26 u v, 75 = ")'l 72')'3"/4" The sixteen vectors 
A wl thA u = 0 or 1 are frequently used. A basis for the Chfford algebra is then given by 

_ ^ . A I ^ A 2 ~ . A 3 ~ A 4  
FA - I 1  t 2  t 3  14 . 

2. Starting from the free staggered fermion action with degenerate mass 

( , ) SF = --a4 ~ x  G o~,(x)x(x)  ~a [X(X +a~t) - X(X - a ~ )  l + m x ( x ) x ( x )  . 

X/a E 7 '4 , o~(x) = (--1) a-1 (xl + . . .+X,_ l  ) , (1) 

there are essentially two approaches to flavour identification, in configuration space [3,6], and in momentum space 

[2,4]. 
In configuration space, the first stage is to partition the lattice Into hypercubes, thereby identifying sixteen 

one-component fields on a lattice of  spacing 2a [3] 

(2) ~X (y + aA) y / 2 a ~ Z  4 XA(S) =~Xfy + aA), ~A(V) = 1-  

Then, by means of  a unitary transformation, quark fields with splnor(a) and flavour (a) Indices are defined 

q~a(v) = ~ X A ( Y ) ,  q t y )  = ~ z.~ ~A(Y)F*A 'm , (3) 

in terms of  which the Fourier transformed action lS 
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SF =m fTr/2a (270 4d4p ~ (p )  ( ~  [(1/2a)sin(2apu)7 u ® 1 - { [1 - cos(2apu) ]/2a}75 ® t~t 5 ] 
-n/2a 

\ 
+ m 1 ® l[~'(p) , (4) 

/ 

with t~ * = 7u, acting In flavour space. Here we have adopted the convention 

7T/2a 
~/2a d4 p exp( - ip .y)~(p)  (5) d4p 

exp(ip.y)~(p) (Tt(y) = f (2zr) 4 q(y) = --  
-lr/2a~ (2704 -Tr/2a 

In momentum space, a very similar procedure can be adopted. After Fourier transforming eq. (1), using the same 
convennon as in (5) with a replacing 2a, we define sixteen one-component fields by partmoning the Brillouln 
zone [4]: 

"~A (p) ="~ [p + Or/a)A ] , ~A (P) = X [p + (rr/a)A ] , p E [--lr/2a ,Tr/2a[. (6) 

In terms of these fields, (1) may be written 

SF = _ rj_Tr/2alr/2a (2") 4 d 4  p AZ, B ~A(P) (~  a sin(apla)(F~)ABl +m~AB),~B(p ) , (7) 

where, alternatively to the expressions of Fu given in ref. [4] in terms of direct products of Pauli matrices, we can 
write. 

(F.)AB = ~ E ( -1 )  A" C+B" Dtr(rc t  3, r D )  " 
C,D 

We now define quark fields with spinor (~) and flavour (a) indices via a umtary transformation V 

(8) 

~ a ( p ) =  ~ v~a'~A(p), ~ , a ( p ) =  ~ ~A(P)V~a, (9) 
A A 

where 

1 ~_~ (_I)A .Bc~a " (10) 
v~a=-8 B 
This differs from the transformation defined in ref. [4] by a rotation in flavour space; that is, their flavour ma- 
trices ~u are related to tu by a unitary transformation. The action then takes the form 

rr/2a 
S F = _  f d4p ~(p ) (~ l s in (apu)Tu®l+ml®l ) '~ (p ) .  (11) 

-rd2a (2704 x , 

Note that bot ~) and ff are completely non-local when expressed in terms of X in configuration space. 
The key difference between (4) and (11) is that the latter is diagonal In flavour space, whereas the former con- 

tams an exphcit flavour mixing term of O(a) in the nawe continuum limit. This is associated with the discontinuity 
at the Brillouln zone boundary exhibited by the propagator derived from (11), which indicates the non-locality of 
this interpretation in configuration space. 
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3. Gauge interactions are introduced in the usual manner 

1 
(12) 

This interaction respects the symmetries (lattice, chiral and charge conjugation) of  the free action, as discussed 
by Golterman and Smit [4]. These authors go on to show that the Identification of the ~-fleld indices can be 
made as in the free case, but only in the continuum hmlt. This is clear since ~ does not have a stmple gauge trans- 
formation, owing to its non-locality in terms of  X. The same also applies to the q-fields, as will be explained below, 

For this reason, it is tempting to define a gauge covarlant quark field in configuration space, for example [3] 

1 

C~A (,V) = [UI(Y)] A1 [U2(F +aA1)] A: [U3(v + a(A 1 +A2))]  A3 [U4(v + a(A 1 +A 2 +A3))]  A4 , (13) 

Here, qgA 0 ' )  is a product of  links from y + aA to one specified corner of  the hypercube, thus giving Q a simple 
(i.e. covariant) gauge transformation law. However, these covanant quark fields do have some disadvantages: 
- Choosing one particular corner and one particular path as in (13) results in the Q-fields, and hadron fields con- 

structed from them, losing most of  the lattice symmetries. The implications of breaking the symmetry for the 
vahdaty of  the flavour Identification, as well as for the restoration of the symmetry group in the continuum 
limit, are unclear. For example, there is no symmetry to prevent the occurrence of  a linearly divergent term 
(i.e. an a -1 mass counterterm) in the Q-field propagator. Such a term would vaolate chlral symmetry, and In- 
troduce the fine-tuning problems famlhar from Wilson and Kahler-Dlrac fermlons [7]. On the other hand, for 
the ~-field propagator, symmetry does not allow this kind of  term. 

- Perturbation theory in terms of  Q-fields is unpleasantly comphcated, due to the appearance o f  ~ A  (Y). 
-- Hadron fields defined via Q-fields contain more hnk variables than is necessary, since all the connection paths 

have to go through one particular corner o f  the hypercube. This leads to greater fluctuations and poorer statis- 
tics m a Monte Carlo simulation. 
The q-fields, on the other hand, retain most of  the lattme symmetries. We therefore propose to retain, even m 

the Interacting case, the definition (3) for configuration space quark fields. As as the case with the ~-flelds, the 
fiavour identification of the q-fields apphes only in the continuum hmlt. 

4. In fact, the definitions ~ and q coincide in the continuum hmit. The general relationship between them may 
easily be derived. From eqs. (2), (3) and (6) we find 

"~a(p) = "8 [,~a(_l)A .B exp(lap.B)~A(p), qC~a(p) = ~A (p)r~a(_l)A "B exp(--lap.B). (14) 
) 

Hence, from (9) and (10) 

= = q ( p ) T * ( p ) ,  

where T(p) is a unitary transformation with the alternative forms 

=- ~A (la ~ pu(--' ® ' +~lu3'5® tut5)) ~a'~b (16) T(p)aa,~b 41 F~taPft~b exp(-iap'A ) = exp -2 u 

For the free theory it is evident that T(p) maps (1 1) into (4). This was the only property required of  the transfor- 
mation previously given m refs. [3,5], which differs by a momentum dependent phase factor from T(p). However, 
this requirement does not determine the transformation umquely but only up to a factor 
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exp( i f  1 ® t ) ,  

where f is an arNtrary real function of  arbitrary parameters and t :s any hermitlan combination of the flavour 

matraces { 1, t , ,  l t ,  t~, : t , t  5, ts). 
On the other hand, the transformation T(p) as defined uniquely from the definmons of q and i ,  and thus the 

relat:onsh:p (16) is vahd in the general anteracting case. Furthermore,  since T(p) depends only upon the physical 
momentum and a, and not  on any bare quantmes,  it tends to the adentity in the continuum hmit. Hence, m this 
hmat, we can adentffy the q-field radices wath spin and flavour. In pamcular ,  at is evadent that the self-energy of  
the q-fields is ldentacal to that of the if-fields (calculated to one loop in ref. [4]) ,  so that there is no linearly da- 

vergent term an the q-propagator. 
Thas identification has been reinforced by the recent p roof  of  the restoration of  flavour symmetry m the con- 

tmuum hmat [5]. Thxs proof  can also be carr:ed out using the transformation T(p). 

5 The transformataons of  the q-fields under the lattice symmetry can easdy be derwed eather from those of 
the X-fields [4,5] using (4), or from those of  the if-fields [4] usmg (15) These laws are hsted m the appendix of 
ref [5]. 

The fields t and q find their apphcat:ons an different areas of  analysas. The q-fields, being local 0.e. wathin 
one hypercube),  are clearly amenable to use :n numeracal simulations, whereas weak couphng perturbat ion theory 
(necessary to make the connection to the continuum) is most easily carried out in terms of  the if-fields [4]. At 
non-zero lattice spacing, both q and i are best regarded as rules for assocmting spin and flavour quantum numbers 
to suitably defined gauge mvariant lattice meson and baryon operators [8,9]. 
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